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Abstract---Experimental heat transfer data are presented and dimensionless correlations developed for 
forced, natural and combined assisting forced and natural convection for heated stationary isothermal 
circular di:~ks over wide ranges of the Reynolds, Rayleigh and modified Reynolds numbers, respectively. 
Experiments with air were performed for a variety of disks ranging in diameter and thickness-to-diameter 
aspect ratio. The correlation for combined forced and natural convection was developed utilizing the 
concept of a modified Reynolds number which accounts for a buoyancy-induced velocity. Utilizing this 
concept, tile experimental data and respective empirical correlations for all three convection modes can be 

collapsed and plotted on the same continuous curve. 

INTRODUCTION 

Considerable empirical data exist in the literature for 
forced convectic,n heat transfer involving external 
flow over a variety of  geometries, and for various 
ranges of  Reynolds number. Many current heat trans- 
fer textbooks [1-5] present empirical correlations for 
forced external flow over a flat plate, a sphere, cylin- 
ders, both aligned and staggered cylinder bundles in 
cross flow, and for tubes of  cylindrical, hexagonal, 
square and other assorted cross-sections, as well as 
falling drops and packed sphere beds. Furthermore,  
empirical correlations exist for natural convection:~ 
heat transfer from geometries such as vertical, hori- 
zontal and inclined fiat plates, horizontal and vertical 
cylinders, spheres, bispheres, oblate and prolate 
spheroids, horizontal upward and downward facing 
surfaces, cubes of  various orientations, vertical and 

t Author to whom correspondence should be addressed. 
:~ The implicatio:as of buoyancy-induced flows as they per- 

tain to application~ in technology are given by Gebhart [6]. 
§ The term circular disk in these references is for a single 

circular disk surface only (top or bottom) and not of the 
entire three-dimen:;ional circular disk. 

¶ The term vertical will refer to the configuration such that 
the direction of the buoyancy force is perpendicular to the 
axis of the disk, and thus parallel to the two fiat sides. 
The term horizonLal refers to the configuration where the 
direction of the buoyancy force is parallel to the axis of the 
disk, and thus perpendicular to the two fiat sides. 

II Other investigators have strived, with limited success, to 
obtain a characteristic length such that experimental data 
for a variety of shapes could be collapsed to a single curve. 
The interested reader should refer to the works of Sparrow 
and Ansari [14], Sparrow and Stretton [15] and Lienhard 
[16] as well as Hassani and Hollands [8]. 

inclined channels, rotating geometries, as well as geo- 
metries within enclosures, and over a wide range of  
the Rayleigh number. In the area of  combined forced 
and natural convection, it appears that most of  the 
attention has been focused on vertical and horizontal 
flat plates and cylinders. A geometry that seems to be 
missing from all of  these lists is that of  a thin circular 
disk. The disk-type geometry is relevant in the cooling 
of  electronic components,  such as disk-shaped 
resistors and power transistors, and the use of  disk- 
type thermistors for temperature and air flow 
measurements. 

Some experimental and theoretical studies have 
been carried out for natural convection from hori- 
zontal and inclined disk surfaces, however only limited 
experimental data exist in the available literature for 
forced [7] or natural [8] convective heat transfer for 
circular disks, and there appears to be no existing 
data for this geometry under conditions of  combined 
forced and natural convection. 

There have been some experimental research [9-11] 
and theoretical studies [12, 13] devoted to natural 
convection heat transfer from stationary and rotating 
horizontal circular disk§ surfaces. Hassani and Hol- 
lands [8] performed experiments measuring the natu- 
ral convection heat transfer from a circular disk in 
both vertical and horizontal configurations,¶ and pro- 
posed a characteristic lengthll such that the exper- 
imental data obtained could be collapsed with certain 
other shapes for a limited range of  the Rayleigh 
number, the goal being a type of  'universal corre- 
lation'. With the exception of  this 'universal corre- 
lation', to the best knowledge of  the authors, no other 
empirical correlation currently exists in the available 

3329 



3330 C.J. KOBUS and G. L. WEDEKIND 

NOMENCLATURE 

A total thermistor heat transfer a r e a  [m 2] u . . . . .  

C empirically determined coefficient 
d diameter of circular disk heat transfer a ....... 

model [m] 
Gr d Grashof number, p2gf l ' (T-  Tf)d3/# 2 V 

h average convective heat transfer vr 
coefficient [W m 2 K '] Vs 

n empirically determined exponent 
Nud average Nusselt number, hd/k 
Pr Prandtl number, l~cp/k 
Q convective heat transfer rate from 

thermistor heat transfer model [W] 
R thermistor heat transfer model 

resistance [fl] 
Rad Rayleigh number, Pr Gra 
Red Reynolds number, pvfl/12 
Re* modified Reynolds number, 

Red + 2(Grd/2)i/2 
Rid Richardson number, Grd/Re~ 
R~ standard resistance [f~] 
t thickness of circular disk heat transfer 

model [m] 
T thermistor heat transfer model 

temperature [K] 

maximum local velocity in natural 
convection boundary layer [m s ~] 
average maximum velocity in natural 
convection boundary layer [m s-~] 
voltage drop across thermistor [V] 
free-stream fluid velocity [m s-1] 
voltage drop across standard resistor 
[V]. 

Greek symbols 
c~ thermistor calibration constant [~] 
fl thermistor calibration constant [K] 
fl' coefficient of thermal expansion [K 1] 

2 natural convection weighting factor in 
the modified Reynolds number. 

Subscripts 
n natural convection 
f forced convection 
c combined forced and natural 

convection. 

literature for natural convection from stationary ver- 
tical thin circular disks in the familiar standard form 

NUd = C, (Pr G rd ) "". (1) 

This is one of the objectives of the current research. 
The mode of convection which is neither dominated 

by pure forced nor pure natural convection, but is 
rather a combination of the two, is appropriately 
referred to as combined, or mixed, forced and natural 
convection. In such a situation, the relative direction 
of the buoyancy force and the externally forced flow 
is important. In the case where the external forced 
flow is in the same direction as that of the buoyancy 
force, the mode of thermal energy transport is termed 
assisting (or aiding) combined convection. Similarly, 
in the case where the forced flow is in a direction 
directly opposite that of the buoyancy force, the mode 
of energy transport is termed opposing combined con- 
vection. A third, less common situation occurs when 
the directions of the forced fluid flow and the buoy- 
ancy force are perpendicular to one another, in which 
case the mode of thermal energy transport is termed 
traverse combined convection. It is generally accepted 
that the primary dimensionless parameter influencing 
combined forced and natural convection phenomena 
is the Richardson number, Rix, which comes about 
directly from the dimensionless form of the Navier- 
Stokes equation [17] and is defined as 

a r  x 

Rix =- Re2x . (2) 

Most current heat transfer texts [1-5, 18] note the 
Richardson number as the primary parameter. 
However, although this parameter is widely accepted, 
there is still some question in the literature as to 
whether it represents the best parameter. For example, 
Churchill [19] proposed the use of Rix/Pr t/3 so as to 
not confine the work to a single fluid. Acrivos [20] 
noted that the Richardson number is the primary par- 
ameter for fluids whose Prandtl number, Pr, is less 
than unity, and Rix/Pr 1/3 is the primary parameter for 
fluids whose Prandtl number is much greater than 
unity. Wilks [21] suggested that the parameter 
Rix/Pr 1/3 may be used with some degree of confidence 
for fluids with Prandtl numbers as low as 0.4. This 
same parameter appears in research by Tsuruno and 
Iguchi [22]. 

There appears to have been relatively little research 
done on combined forced and natural convection as 
compared with either pure forced or pure natural con- 
vection, a good summary of the existing literature 
being given by Churchill [19] and more recently by 
Gebhart et al. [4]. A common coupling rule [4, 5] 
for combined forced and natural convection is an 
addition of correlations for forced and natural con- 
vection, each correlation raised to the same power, 
i.e. 
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Nu" -- N~gv 4- N~gN (3) 

where the subscripts F and N refer to pure forced and 
pure natural convection respectively, and the 
exponent, n, is determined from experimental data 
and varies from one geometry to the next. The 
addition of  the forced and natural terms in equation 
(3) is used in the case of  assisting flow, while a differ- 
ence of  the terms is used in opposing flow. As will be 
discussed later, c,ther 'rules' for combined forced and 
natural convection include replacing the buoyancy 
force by a pseudo-velocity [23, 24] and, more notably, 
by utilizing a modified Reynolds number, Re*x, which 
incorporates a characteristic buoyancy-induced vel- 
ocity along with the free-stream velocity. The resulting 
modified Reynolds number is of  the form 

Re* = Rex + ;~x/(Grx/2). (4) 

However,  there is a lack of  consensus in the available 
literature on the value of  the weighting factor, ,L 
Although the concept of  a modified Reynolds number 
is less common than the combining rule of  equation 
(3), it will be shown later that the modified Reynolds 
number is very effective in the current research for 
developing an empirical correlation for combined for- 
ced and natural convective heat transfer. 

Al though the:re have been a limited number of  
experimental and theoretical studies of  a few simple 
external geometries for combined forced and natural 
convection, there have not, to the best knowledge of  

t Thermistors are semiconductors of ceramic material 
made by sintering mixtures of metallic oxides such as manga- 
nese, nickel, cobai[t, copper, iron and uranium. Disks are 
made by pressing thermistor material under high pressure in 
a round die to produce fiat coin-like pieces. These pieces are 
then coated with silver on the two fiat surfaces. Refer to 
Thermistor Manu~rl, Fenwal Electronics, Framington, MA 
01701, U.S.A. 

:~ The maximum errors occurred in the smallest of the heat 
transfer models (d = 5.21 mm) where the size of the lead 
wire was proportionately larger in comparison with the diam- 
eter of the disk thermistor. 

§ This assumes the temperature to be uniform within and 
over the surface c,f the thermistor. Since the thermistor is 
thin, with a uniform voltage difference between its fiat 
surfaces, the current flux will be uniform, resulting in a uni- 
form Joule heating within the disk. Therefore, a simple one- 
dimensional thernml analysis indicates a worst-case tem- 
perature difference between the center plane and the flat 
surfaces of the disk to be less than I°C for the range of 
experimental data presented. Radial temperature variation, 
due to local varialion in the convective boundary flux, will 
also be small because the thermal conductivity of the ther- 
mistor material is sufficiently high. 

¶The experimental measurement difficulties alluded to 
here are those associated with attempting to measure surface 
temperature by mounting a temperature sensor such as a 
thermocouple on Lhe surface. The presence of the thermo- 
couple distorts the true surface temperature to varying 
degrees, depending upon the relative size of the heat transfer 
surface and the diameter of the thermocouple wire. The 
major mechanism for this distortion is the conduction fin 
effects within the thermocouple wires, which would tend to 
lower the temperature of a heated surface at the point of 
measurement. 

the authors, been any published studies for circular 
disks. Most  of  the experimental studies for combined 
forced and natural convection for external flows have 
been performed on long cylinders and flat plates. 
However,  even for such a familiar geometry as a ver- 
tical flat plate, only limited experimental data exist for 
assisting flow, and even fewer for opposing flow. The 
experimental data available, such as that presented by 
Kliegel [25], Gryzagoridis [26], Oosthuizen and Hart  
[27], Lloyd and Sparrow [28] and Ramachandran et 
al. [29], are for local heat transfer, the data being 
obtained by measuring, usually with an inter- 
ferometer, local temperature gradients. In addition, 
Oosthuizen and Bassey [30] presented experimental 
data for the average heat transfer for a vertical flat 
plate under conditions of  both assisting and opposing 
flow. 

EXPERIMENTAL APPARATUS AND 
MEASUREMENT TECHNIQUES 

The circular disks that were used as heat transfer 
models for the experimental data presented in this 
paper were commercially available disk-type ther- 
mistors. t  Six different circular disk models were 
tested, ranging in diameter, d, from 5.21 to 19.99 mm 
and in thickness-to-diameter aspect ratio, t/d, between 
0.058 and 0.2. Thermistors were chosen as the heat 
transfer models because they provided a unique com- 
bination for indirectly measuring the surface tem- 
perature and the convective heat transfer rate [7, 31]. 
The thermistor was self-heated by means of  Joule 
heating. Conduction losses through the thermistor 
lead wires (0.127 mm diameter) were minimized (less 
than 3, 6 and 8%;~ for forced, combined forced and 
natural, and natural convection, respectively) by using 
constantan wire, which has a low enough thermal 
conductivity to minimize the 'fin effect' and an elec- 
trical resistivity low enough to minimize Joule heating. 
Also, a one-dimensional analysis was done on the lead 
wires modeling the 'fin effect' and taking into account 
the possibility of  Joule heating; the result of  this 
analysis indicated that the existence of  any Joule heat- 
ing acted to decrease the conduction losses through 
the lead wires. 

Using an electrical circuit suggested by Wedekind 
[7], as shown in Fig. 1, the thermistor current and 
resistance can be accurately and simultaneously mea- 
sured during self-heating. This makes it possible to 
measure indirectly not  only the convective heat trans- 
fer rate, but also the average temperature of  the ther- 
mistor, the latter by having pre-calibrated the resist- 
ance/temperature characteristics of  each thermistor 
heat transfer model. Thermistors have a high resist- 
ance coefficient, therefore the heat transfer surface 
temperature, T, could be indirectly measured quite 
accurately§ without the many difficulties encountered 
in attempting to measure the surface temperature 
(especially on small heat transfer models) by con- 
ventional means.¶ 
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( ) 
Thermistor Heat 
Transfer Model 

r - - - - -  

> 

Standard ~ Rs 
Resistance 

Thermistor 
Overheat 
Protection 

Q Variable / 
d-c Power ?l-- Supply 

Fig. 1. Schematic of electric circuit network; indirect 
measurement of thermistor temperature and convective heat 

transfer rate. 

The average convective heat transfer coefficient, h, 
can be expressed in terms of the heat transfer rate, 
Q, the heat transfer area, A, and the temperature 
difference, ( T -  T¢), between the surface and the fluid ; 
thus 

h - - -  ( 5 )  
A(T- ~r0 

where, as mentioned earlier, the convective heat trans- 
fer rate, Q, can be indirectly measured [7] by analyzing 
the electrical circuit represented in Fig. 1. Thus 

(ZV,) 
= Rs-"  (6) 

The disk surface temperature, T, is indirectly mea- 
sured by utilizing the exponential relationship that 
exists between the thermistor resistance, R, and its 
absolute temperature, T, which is of the form 

R = R ( T )  = ~ e  l~/r (7) 

where the parameters c¢ and/~ are unique for a given 
thermistor, and can be determined from calibration 
measurements. Once these parameters are known for 
a given thermistor heat transfer model, the thermistor 
temperature, T, can be readily determined by 
rearranging equation (7) and making appropriate sub- 
stitutions for the thermistor resistance, R ; thus 

T = In [(V/Vs)(Rs/~)]"  (8) 

A constant  temperature may be maintained during a 
test by adjusting the power supply voltage such that 
the thermistor-standard resistor voltage ratio, V/Vs, 
remains constant. 

t Because of the low velocities encountered in combined 
forced and natural convection experimentation, a pitot tube 
could not be used. Therefore, variable-area flowmeters (the 
smallest of which had a full-scale reading of 7.87 cm 3 s -1) 
were used upstream of the diffuser section to measure the 
volumetric flowrate and thus indirectly the average velocity. 
Also, a hot-wire anemometer was used to measure the vel- 
ocity distribution in the test section, the non-uniformity of 
which was less than 10% at all times. 

A schematic of the experimental apparatus, which 
amounts  to a miniature wind tunnel made possible by 
the small size of the thermistor heat transfer models, 
is shown in Fig. 2, and is the same as that described by 
Wedekind [7], except that it is in the vertical position. 
Since the inclination angle of the apparatus is not  
relevant when the pure forced convection exper- 
imentation was performed, the forced convection 
experimentation was done with the apparatus in the 
horizontal position [7]; however, the apparatus was 
in the vertical position for both natural convection 
and combined forced and natural  convection. Refer- 
ring to Fig. 2, the diffuser section was replaced by a 
plug when natural  convection experiments were per- 
formed to avoid the 'chimney effect'. 

The inside diameter of the test section where the 
thermistor disks were mounted was 3.25 cm and the 
length of the velocity development section was 26.5 
cm. Uniformity of velocity upstream of the heat trans- 
fer model was within 8% as measured by a pitot-tube 
traverse.t The air velocity was varied by controlling 
the inlet air flow rate. The free-stream air temperature 
was measured with a thermocouple probe and a vari- 
able d.c. power supply was used as the current source 
to self-heat the thermistor. Digital multimeters were 
used to measure simultaneously the voltage drop 
across the thermistor and standard resistor of known 
value, which, as shown in Fig. 1, was connected in 
series with the thermistor. 

Experimental uncertainty in the Prandtl  number  is 
assumed to be negligible since it is primarily a function 
of air temperature, which was accurate to +0.6°C. 
Maximum experimental uncertainty in the Reynolds 
number  was _ 7 % ,  due primarily to uncertainty in 
the velocity measurements. Maximum experimental 
uncertainty in the Nusselt number  was _ 12%, due 
primarily to uncertainty in the measured convective 
heat transfer coefficients. Uncertainties in geometry 
measurements were relatively small, and thus their 
only significant influence was in the measurement 
uncertainty of the convective heat transfer coefficient. 

EXPERIMENTAL DATA AND RESULTS 

As was mentioned earlier, six different disk heat 
transfer models were tested, the diameters ranging 
from 5.21 to 19.99 mm, and a thickness to diameter 
aspect ratio, t/d, from 0.062 to 0.2. The edges of the 
disk were relatively sharp (edge radius - 0.04 mm). 
For the full range of measurements taken for forced, 
natural,  and combined forced and natural  convection, 
air velocities, vf, ranged from 0.0015 to 35 m s -~ 
(0.005-114 ft s ~), temperature differences, T - T f ,  
from 5 to 56°C (9-100°F) and the convective heat 
transfer coefficients, h, from 23 to 307 W m -2 °C -~ 
(4-54 Btu h -~ ft 2 OF-i). Property values for air, 
which was at atmospheric pressure, were evaluated at 
the film temperature, T~jm, where T~m = (Tw+ TO~2. 
Reynolds numbers,  Red, ranged from 2.0 to 3.0 x 104. 
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Fig. 2. Schematic of experimental apparatus and disk orientation. 
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Fig. 3. Co:avective heat transfer for flow past a stationary circular disk whose axis is perpendicular to the 
flow, 

Forced convection 
The experimental results for forced convection are 

depicted in dimensionless form in Fig. 3, where 

Nud/Pr 1/3 is plotted as a function of Reynolds number, 
Red. Experiments yielding these data have been 
repeated many times, with excellent repeatability. The 
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empirical correlat iont  which fits all of  the data is given 
by 

Nud = Cf Pr I/3 Re~, Cf = 0.356nf = 0.600 

9 x 102 ~< Rea ~< 3 x 104. (9) 

The correlation coefficient for the curve fit is 0.998, 
with a maximum deviation of  less than 6% and the 
form of  equation (9) is the classic form for forced 
convection correlations for external flow over various 
geometries [1-5]. 

It should be pointed out at this time that only thin 
circular disks were tested (the thickness-to-diameter 
aspect ratio, t/d, varied from 0.058 to 0.20). For  this 
range of  aspect ratio, if  any influence of  the aspect 
ratio exists, it must be less than that of  the exper- 
imental uncertainty in the measurements, since no 
discernible pattern of  influence was observed for any 
data presented in this paper, regardless of  the mode 
of  heat transfer. Therefore, a range restriction on the 
aspect ratio cannot be made at this time. 

As was discussed by Wedekind [7], an analysis of  
the experimental uncertainty in the indirect measure- 
ment of  the convective heat transfer coefficient, due 
to uncertainties in the various direct measurements, 
indicates a maximum error of  approximately 12%. 
F r o m  a statistical perspective, the measurement errors 
would normally be expected to be less than the 
maximum. This seems to be borne out in the relatively 
small level of  scatter in the experimental data. One of  
the reasons for this relatively high level of  accuracy is 
the technique of  using thermistor disks as heat transfer 
models, and utilizing their associated resistance/ 
temperature characteristics for measuring surface 
temperature and Joule heating for measuring the heat 
transfer rate. The range of  Reynolds numbers given 
in equation (9) represented the limits of  the existing 

t It should be pointed out that there is a small difference 
between the current correlation and that reported by Wede- 
kind [7]. Wedekind reported Cf= 0.591 and nf= 0.564. 
Although the exponents are virtually identical, the constant 
in front is not. This difference was traced to a resist- 
ance/temperature measurement error in calibrating the ther- 
mistor heat transfer models. 

~: The experimental data of Hassani and Hollands [8] were 
represented by the Nusselt number based on the square root 
of the area and the Rayleigh number based on a characteristic 
length, H, which was a function of the height and the average 
periphery of the disk. In this way, the research of Hassani 
and Hollands attempted to collapse the disk data on a single 
curve with a variety of other geometries. From knowledge 
of the disk geometry, the experimental data were transformed 
to where the disk diameter, d, was the characteristic length. 

§ The under-prediction of the correlation could be attri- 
buted to some turbulence in the developing boundary layer; 
however, the Grashof numbers obtained by Hassani and 
Hollands [8] are below that necessary for a transition to 
turbulence to occur, as pointed out by the investigation of 
Vitharana and Lykoudis [33] for vertical surfaces. It should 
be noted that even if there is no turbulence present, typical 
natural convection data for other geometries, such as flat 
plates and disks [1] are not linear on a logarithmic plot over 
the entire range of the Rayleigh number. 

experimental apparatus and heat transfer models, not 
necessarily the limit of  the existing correlation. 

Natural convection 
The experimental results for natural convection are 

depicted in dimensionless form in Fig. 4, where Nu~ is 
plotted as a function of  Rayleigh number, Rad 
(Rad = Pr Grd). An empirical correlation which fits 
all of  the data is given by 

Nud = Cn(PrGrd)"~ C, = 1.759n, = 0.150 

102 ~< PrGrd <~ 105 . (10) 

The correlation coefficient for the curve fit is 0.953, 
with a maximum deviation of  less than 15%. The 
results of  an analysis of  the experimental uncertainty 
is identical to that for the forced convection data, with 
a maximum uncertainty of  less than 12%. 

Hassani and Hollands [8] were, to the best knowl- 
edge of  the authors, the only prior researchers to per- 
form natural convection experimentation with a three- 
dimensional disk body. However,  their investigation 
was limited to a single disk model of  diameter, d = 82 
mm, and a thickness-to-diameter aspect ratio, 
t/d = 0.1. Figure 5 illustrates the comparison between 
the data of  Hassani and Hollands [8] and that of  the 
current research. It should be noted that the exper- 
imental data of  Hassani and Hollands,:~ which was 
modeled after the work of  Chamberlain et al. [32], 
was obtained utilizing a transient measurement tech- 
nique to measure indirectly the convective heat trans- 
fer rate. Referring to Fig. 5, it can be seen that the 
transiently-obtained data agreed very well with the 
steady-state data obtained in the current research. It 
should also be noted that the empirical correlation, as 
described by equation (10), seems to be valid over a 
wider domain than specified, again the domain rep- 
resenting the limit of  the existing experimental appar- 
atus. In fact, the correlation seems to be valid over 
virtually the entire range of  the data presented by 
Hassani and Hollands, albeit under-predicting at the 
high end of  the Rayleigh number.§ This under-pre- 
diction will be discussed in a later section when the 
modified Reynolds number, Re*, is utilized. However,  
more experimentation would need to be done to deter- 
mine the precise limits of  the existing correlation. 

Combined forced and natural convection 
Combined forced and natural convection is com- 

plicated by the coupling of  the inertial and buoyancy 
forces. The experimental data in Fig. 6 clearly demon- 
strate the relative influence of  natural convection for 
two different diameter disks in assisting flow. As the 
Reynolds number decreases, natural convection 
becomes more dominant  with Nud/Pr ~/3 asymp- 
totically approaching that of  pure natural convection 
as represented by the dashed lines which were 
obtained from the natural convection correlation, 
equation (10), for the particular disk at the same tem- 
perature. As the Reynolds number increases, forced 
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Fig. 4. Natural convective heat transfer for a stationary circular disk whose axis is perpendicular to the 
buoyancy force. 
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Fig. 5. Comparison between current natural convective heat transfer data for vertical disks and the 
experimental data of Hassani and Hollands [8]. 

convection becomes more dominant, asymptotically 
approaching pure forced convection. 

Aside from the combining rule of equation (3), only 
a few other methods of dealing with combined forced 
and natural conw~ction have received significant atten- 
tion. One such method was the proposal of using a 
pseudo-velocity function to replace the buoyancy term 
in the governing differential equation [23, 24]. 
Although not specificaUy mentioned in the above ref- 
erenced research, a pseudo-velocity gives rise to a 
modified Reynolds number which accounts for a 
buoyancy-induced velocity as well as the imposed free- 

stream velocity. Churchill [19]  reviewed prior 
research, some of which postulated that an empirical 
correlation may be obtained using a modified Reyn- 
olds number, Re*, which incorporates some charac- 
teristic buoyancy-induced velocity added vectorially 
to the imposed free-stream velocity. The concept of 
a modified Reynolds number also appears earlier in 
research presented by Lemlich and Hoke [34] and 
Hatton et al. [35], who investigated combined forced 
and natural convective heat transfer for horizontal 
cylinders. 

For  the present research, which is for assisting flow, 
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Fig. 6. Experimental data for pure forced and for combined forced and natural convective heat transfer 
for vertical disks. 

the form of the modified Reynolds number, Re*, util- 
izing a buoyancy-induced velocity averaged over the 
vertical centerline of the circular disk,t  is 

Re* = Red + 2(Grdl2) li2. (11) 

This form of the modified Reynolds number:~ appears 
in several earlier investigations [19]. However, the par- 
ticular choice of the characteristic buoyancy-induced 
velocity, which affects the weighting factor, 2, is some- 
what unclear. It has been proposed that the local 
maximum velocity in the pure natural convection 
boundary layer be chosen as the characteristic 
velocity, as pointed out by a number of investigators§ 
[36]. Churchill [19] pointed to a number of researchers 
who took the weighting factor, 2, to be unity for 
geometries such as flat plates, cylinders and spheres. 
In an effort to obtain the appropriate weighting factor, 
the authors chose to use the maximum local velocity 

t In general, the average characteristic velocity would be 
obtained by utilizing the integral form of the mean-value 
theorem along the length of the vertical surface. 

:~ It should be noted that the modified Reynolds number 
actually contains the Richardson number, which is generally 
accepted as the governing parameter for combined forced 
and natural convective heat transfer phenomena. Rearrang- 
ing equation (11) yields Re* = Red { 1 + 2(Ridl2) I/2 }. 

§ Hall and Price [36] utilized the study by Cheesewright 
[37] and obtained 2 = 0.3, but on a local basis only. It is 
noted that although the concepts of Hall and Price were 
useful to the current research, their study was for turbulent 
natural convection with a superimposed laminar free-stream 
velocity. 

¶ This seemed the most plausible since the maximum vel- 
ocity in the forced convection boundary layer, which is the 
imposed free-stream velocity, is used to define the Reynolds 
number. It is noted that disk geometry differs from a vertical 
flat plate and thus the characteristic velocity obtained from 
boundary layer theory is an approximation of the true 
velocity, although probably more accurate along the disk 
centerline. 

in the natural convection boundary layer averaged 
over the vertical centerline of the flat side of the disk.¶ 
Utilizing the integral solution to laminar natural con- 
vection boundary layer theory for a vertical flat plate 
[1, 4], the averaged maximum velocity in the natural 
convection boundary layer is 

l'i/ U . . . . .  (X)  dx /4n,max ~ d = 0 

where 

× {p2gfl, (Tw -- Tf)x'~ 1,2 

Thus, assuming uniform properties in the non-strati- 
fied air, the modified Reynolds number is expressed 
a s  

p ( u f  -i- a . . . . .  )d 
Re* - 

0.723 
= Rea+ f / 2 0 \  "11/2 (Gral2)l"2 

= Red + , t (Grd2)  ~/2. (13)  

The weighting factor, 2, is 0.558 for air at 21°C. 
The experimental data for combined forced and 

natural convection were plotted in a form similar to 
that for forced convection data, except that the data 
are plotted against the modified Reynolds number 
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Fig. 7. Combined forced and natural convective heat transfer for a stationary circular disk whose axis is 
perpendicular to both free-stream velocity and the buoyancy force ; assisting flow. 

rather than the standard Reynolds number. Referring 
to Fig. 7, the result is seen to be very linear with 
excellent data collapse. The empirical correlation 
obtained for combined forced and natural con- 
vection~" was 

Nud = Cc Pr 1/3 Re  *n° Cc = 1.570nc = 0.408 

70 ~< Re$<~ 2100. (14) 

The correlation coefficient of the correlation is 0.983. 

SUMMARY AND CONCLUSIONS 

Experimental heat transfer data have been pre- 
sented and dimensionless correlations proposed for 
forced, natural and (assisting) combined forced and 
natural convection from heated stationary isothermal 
circular disks over wide ranges of the Reynolds 
number, Rayleigh number and a modified Reynolds 
number, respectively. In the case of combined forced 
and natural convection, the modified Reynolds 
number, Re*, was utilized which incorporates a buoy- 
ancy-induced characteristic velocity obtained from 
natural convection boundary layer theory which 
includes a weighting factor, 2, for the natural con- 
vection contribution. The modified Reynolds number 
is seen to reduce to the appropriate asymptotes of 
pure natural and pure forced convection. 

An advantage to using the modified Reynolds num- 
ber is that experimental data for forced, natural and 

t Before the discovery of the usefulness of the modified 
Reynolds number and the following empirical correlation, 
the authors attempted utilizing the combining rule of equa- 
tion (2) with the experimental data resulting in a constant, 
n, of 3]2. 

:~Although the entire domain of all of the data is 
represented, some of the data are not displayed to eliminate 
over-crowding. 

combined forced and natural convection may be rep- 
resented on the same graph. Referring to Fig. 8, the 
same dimensionless heat transfer data~C are presented 
as in Figs, 3, 4 and 7 for forced, natural and combined 
forced and natural convective heat transfer, respec- 
tively, except that the data are plotted against the 
modified Reynolds number, Re*, defined by equation 
(11), with 2 = 0.558. Along with the experimental 
data, the previously developed empirical correlations 
for the three domains (forced, natural, and combined 
forced and natural convection) are superimposed. It 
should be noted that the forced convection data, and 
the corresponding empirical correlation, are virtually 
identical to those represented in Fig. 3 with the stan- 
dard Reynolds number, because the natural con- 
vection contribution to the modified Reynolds num- 
ber is negligible (less than 3% even at the low end of 
the forced convection data, where Re* = 2100). Simi- 
larly, the standard Reynolds number in equation (11) 
is zero for pure natural convection and thus the 
modified Reynolds number is a function only of the 
Grashof number, as expressed by equation (10), 
where the characteristic velocity is buoyancy-induced. 
The pure natural convection correlation, equation 
(10), had to be slightly rearranged to be plotted against 
the modified Reynolds number. Thus : 

NUd 
prl/3 = C, Pr -1/3 (PrGrd) "o 

= Cn Pr%-1/3) Re,2nn. (15) 

The differences in the trends of the data for the three 
different domains (forced, natural, and combined forced 
and natural convection) seem clear, especially when 
the corresponding empirical correlations are super- 
imposed. As can be seen from Fig. 8, a criterion may 
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Fig. 8. Experimental results for forced, natural and combined forced and natural convective heat transfer 
from circular disks. 

be established? between the different domains by 
equating the correlation for combined forced and 
natural convection with the correlation for pure forced 
and pure natural convection, respectively. Using this 
approach, it is seen that forced convection is dominant  
when Re* >>-2100, natural convection is dominant  
when Re* <~ 70 and combined forced natural con- 
vection must be considered in between the two limits 
when 70 ~< Re* <~ 2100. 

It should be pointed out that the established cri- 
terion was developed solely from equating the cor- 
relations as described above, and thus is not  claimed 
to be a precise distinction of  the three convection 
modes in any absolute sense. Referring again to Fig. 
8, there is clearly some overlap in the current data 
between the natural and combined and between the 
combined and forced convection data. Also, when the 
pure natural convection data of  Hassani and Hollands 
[8] were superimposed, the data were plotted right on 
top of  the current data and overlapped most of  what 
has been labeled as combined convection. The point 
being made here is that the boundaries between pure 
natural and combined convection, and between com- 
bined and pure forced convection, are somewhat 
'blurred' ,  the former apparently more than the latter. 

t Sparrow and Gregg [38] developed criteria for pure 
forced convection in terms of the Richardson number for a 
vertical fiat plate utilizing a numerical model. Such criteria 
may be more plausible in terms of the modified Reynolds 
number, Re*. Similar criteria are mentioned in the research 
of Brdlik et al. [39]. 

Table 1. Summary of constants for use with general con- 
vective heat transfer correlation 

Modified 
Reynolds number, 

Re* C n 

3-70 2.469 0.300 
70-2100 1.570 0.408 

2100-40 000 0.356 0.600 

However,  the value of  representing the data in terms 
of  the modified Reynolds number is that, as is appar- 
ent in Fig. 8, the correct convective heat transfer can 
be predicted regardless of  the distinct convection 
mode by utilizing Table 1 with the general correlation 

Nud = C Pr  1/3 Re*". (16) 

Since only air was tested, the correlations are 
recommended for Prandtl  numbers near unity, which 
includes most common gases. The correlations may 
be valid for Prandtl  numbers outside this range, how- 
ever this is not  known at this time since no exper- 
imental data are available. This is the subject of  ongo- 
ing research. 
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